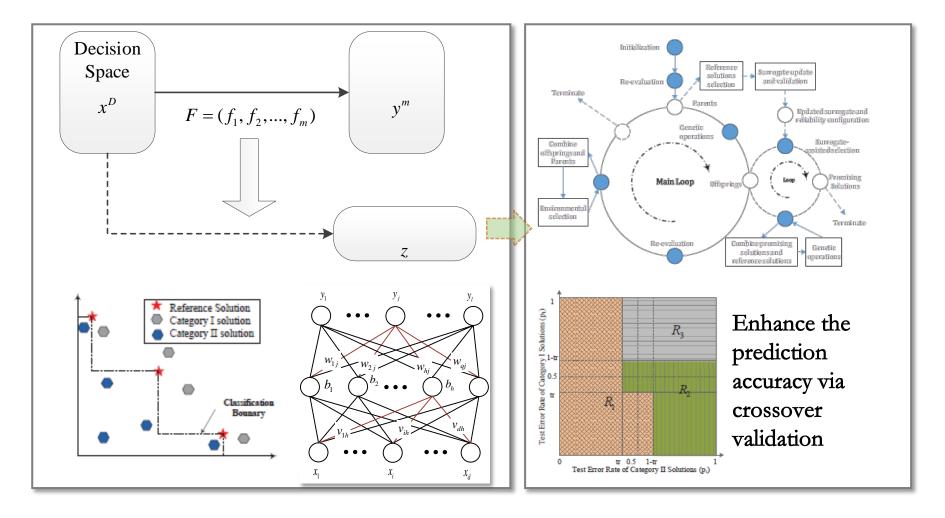

A classification based surrogate-assisted evolutionary algorithm for expensive manyobjective optimization

> Linqaing Pan, Cheng He, Ye Tian, Handing Wang, Xingyi, Zhang, and Yaochu Jin

Expensive problems: Computationally and/or Economically Expensive; Number of function evaluations is limited (*several hundreds*)

CFD simulations


Surrogate-assisted evolutionary algorithm

- Surrogate a single objective by a single model (K-RVEA);
- Surrogate the aggregation / fitness function (ParEGO、MOEA/D-EGO)
- Surrogate a classifier (CPS-MOEA)

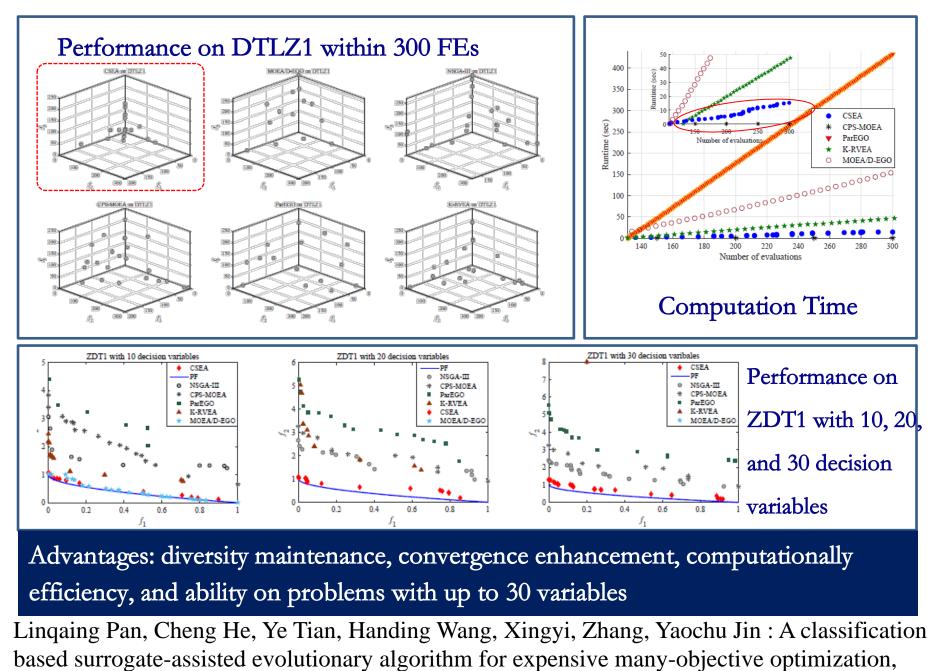
Drawbacks

- Multiple surrogate models are used
- Time consuming

Idea: Design a classification criteria to distinguish good solutions from the bad ones, and then use a neural network to predict the candidate solutions for saving real function evaluations.

Efficiency of the Surrogate Model

Problem	Obj.	CSEA ⁻	CSEA
DTLZ1	3 6	9.71e+1(2.30e+1)- 2.58e+1(1.11e+1)-	4.36e+1(8.82e+0) 1.32e+1(4.43e+0)
DTLZ3	$\frac{10}{3}$	3.87e-1(7.15e-2)- 2.47e+2(5.91e+1)- 1.05e+2(2.60e+1)-	2.86e-1(4.37e-2) 1.09e+2(2.73e+1) 4.78e+1(1.38e+1)
	10	$\frac{1.26e+0(2.49e-1)-}{2.21e-1(3.21e-2)-}$	1.00e+0(9.63e-2) 8.07e-2(2.22e-2)
DTLZ5	6 10	$\frac{1.13e-1(1.90e-2)}{8.36e-2(2.96e-2)}$	6.53e-2(2.20e-2) 1.00e-2(9.22e-4)


Ę

WFG1	4	2.57e+0(8.83e-2)-	2.01e+0(3.85e-2)
	6	2.90e+0(7.55e-2)-	2.51e+0(3.70e-2)
	8	3.30e+0(1.46e-1)-	3.00e+0(7.49e-2)
	10	3.64e+0(1.64e-1)-	3.30e+0(8.82e-2)
WFG2	4	8.94e-1(4.72e-2)-	7.13e-1(5.16e-2)
	6	1.34e+0(6.26e-2)-	1.16e+0(1.33e-1)
	8	1.93e+0(1.82e-1)-	1.33e+0(1.12e-1)
	10	2.96e+0(5.76e-1)-	2.48e+0(2.47e-1)
WFG3	4	6.90e-1(5.21e-2)—	5.14e-1(6.39e-2)
	6	8.49e-1(7.02e-2)-	6.44e-1(3.48e-2)
	8	8.96e-1(7.71e-2)—	6.87e-1(7.08e-2)
	10	7.55e-1(8.98e-2)-	5.24e-1(6.86e-2)

WFG4	4	1.28e+0(1.42e-1)-	9.03e-1(6.51e-2)
	6	3.32e+0(2.65e-1)-	2.65e+0(2.62e-1)
	8	6.30e+0(2.77e-1)-	5.00e+0(3.98e-1)
	10	1.01e+1(7.53e-1)-	8.74e+0(5.93e-1)
	4	1.12e+0(3.48e-2)-	8.74e-1(1.38e-2)
WFG5	6	2.69e+0(1.76e-1)-	2.11e+0(7.87e-2)
WPOD	8	5.02e+0(3.18e-1)-	4.00e+0(1.27e-1)
	10	8.01e+0(4.72e-1)-	7.08e+0(2.50e-1)
	4	1.22e+0(4.51e-2)-	1.06e+0(3.05e-2)
WFG6	6	2.92e+0(1.76e-1)-	2.37e+0(1.07e-1)
WFG0	8	5.25e+0(3.73e-1)-	4.01e+0(2.19e-1)
	10	8.00e+0(4.10e-1)-	7.12e+0(2.79e-1)
	4	1.11e+0(7.5le-2)-	9.14e-1(2.36e-2)
WFG7	6	2.87e+0(2.05e-1)-	2.40e+0(2.01e-1)
WFUI	8	5.62e+0(3.86e-1)-	4.64e+0(2.34e-1)
	10	8.70e+0(4.21e-1)-	7.52e+0(3.79e-1)
	4	1.45e+0(7.24e-2)-	1.21e+0(7.30e-2)
WFG8	6	3.23e+0(2.47e-1)-	2.76e+0(1.33e-1)
WFU8	8	5.62e+0(4.57e-1)-	4.90e+0(3.61e-1)
	10	8.89e+0(4.82e-1)-	8.07e+0(3.62e-1)
	4	1.27e+0(1.25e-1)-	1.08e+0(4.29e-2)
1912/230	6	2.97e+0(2.23e-1)-	2.46e+0(1.15e-1)
WFG9	8	5.38e+0(3.42e-1)-	4.46e+0(1.91e-1)
	3	memory and an and a set	- management and the second

Significant Performance Improvement

IEEE Transactions on Evolutionary Computation, DOI:10.1109/TEVC.2018.2802784.